Motion estimation in the frequency domain using fuzzy c-planes clustering

نویسندگان

  • Çigdem Eroglu Erdem
  • Günes Karabulut-Kurt
  • Evsen Yanmaz
  • Emin Anarim
چکیده

A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

A Novel Temporal-Frequency Domain Error Concealment Method for Motion Jpeg

Motion-JPEG is a common video format for compression of motion images with highquality using JPEG standard for each frame of the video. During transmission through a noisychannel some blocks of data are lost or corrupted, and the quality of decompression frames decreased.In this paper, for reconstruction of these blocks, several temporal-domain, spatial-domain, andfrequency-domain error conceal...

متن کامل

Multi-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study

Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...

متن کامل

Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods

Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...

متن کامل

Estimation of Seigniorage Laffer curve in IRAN: A Fuzzy C-Means Clustering Framework

There are two sources for governments to raise their revenues. The first is the direct taxation levied on output, and the second is seigniorage. Seigniorage is also known as printing new money and is defined as the value of real resources acquired by the government through its power of sovereignty on its monopoly of printing money. The purpose of this paper is to examine the Laffer curve for Se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 2001